
Nix: A new way to manage packages

Jack Garner

1

What is Nix?

Nix is an ecosystem

• Nix (the daemon)

• Nix (the language)
• Nix-* commands (official and unofficial)
• Nixpkgs
• Nixos

2

Nix is an ecosystem

• Nix (the daemon)
• Nix (the language)

• Nix-* commands (official and unofficial)
• Nixpkgs
• Nixos

2

Nix is an ecosystem

• Nix (the daemon)
• Nix (the language)
• Nix-* commands (official and unofficial)

• Nixpkgs
• Nixos

2

Nix is an ecosystem

• Nix (the daemon)
• Nix (the language)
• Nix-* commands (official and unofficial)
• Nixpkgs

• Nixos

2

Nix is an ecosystem

• Nix (the daemon)
• Nix (the language)
• Nix-* commands (official and unofficial)
• Nixpkgs
• Nixos

2

But why?

What makes Nix* cool

• Atomic upgrades and installs
• Partial upgrades through isolated packages
• Easy rollbacks
• Rootless package operations
• Source based with a binary cache
• Cross platform (theoretically)
• Version pinning of specific packages
• Reproducible, sandboxed build environments
• Can output docker files, VM’s, file systems, etc.
• Supports cross compilation

3

What makes Nix* less cool

• Documentation

• The language has a learning curve
• Documentation
• Documentation

Hopefully this talk will help you understand Nix

4

What makes Nix* less cool

• Documentation
• The language has a learning curve

• Documentation
• Documentation

Hopefully this talk will help you understand Nix

4

What makes Nix* less cool

• Documentation
• The language has a learning curve
• Documentation

• Documentation

Hopefully this talk will help you understand Nix

4

What makes Nix* less cool

• Documentation
• The language has a learning curve
• Documentation
• Documentation

Hopefully this talk will help you understand Nix

4

What makes Nix* less cool

• Documentation
• The language has a learning curve
• Documentation
• Documentation

Hopefully this talk will help you understand Nix

4

Let’s make a package!

Nix (the daemon)

• Accepts derivations and builds them
• Gives every package (derivation) a hash based on the hashes of

inputs
• Stores built packages in

/nix/store/hash-packageName/{bin/share/lib/include/*}

What about the Linux Filesystem Hierarchy?
Nix uses a combination of symlinks, environment variables, and
patched low level tools to make software run in this environment.
If those fail for a package, Nix can create a fake hierarchy which
only that package sees.

5

Nix (the daemon)

• Accepts derivations and builds them
• Gives every package (derivation) a hash based on the hashes of

inputs
• Stores built packages in

/nix/store/hash-packageName/{bin/share/lib/include/*}

What about the Linux Filesystem Hierarchy?
Nix uses a combination of symlinks, environment variables, and
patched low level tools to make software run in this environment.
If those fail for a package, Nix can create a fake hierarchy which
only that package sees.

5

What is a derivation?

A derivation is a key value pair with the following keys:

• system = “x86_64-linux” (or darwin or . . .)
• name = “Package name”
• builder = “command to build package”
• args = [“Args” “To pass” “to the builder”]
• A few really uncommon ones. . .

Any other keys become environment variables in the sandbox.

6

What makes derivations cool?

• Builders can’t depend on any files or variables not mentioned in
the derivation

• Any files mentioned in the derivation become packages
• Any packages needed by the derivation get built first

• Derivations are reproducible, complete build instructions

• Derivations can be copied between machines

7

What makes derivations cool?

• Builders can’t depend on any files or variables not mentioned in
the derivation

• Any files mentioned in the derivation become packages
• Any packages needed by the derivation get built first

• Derivations are reproducible, complete build instructions
• Derivations can be copied between machines

7

./default.nix

with (import <nixpkgs> {});
derivation {

name = "hello";
builder = "${bash}/bin/bash";
args = [./hello_builder.sh];
inherit gnumake gcc coreutils gawk gnused gnugrep;
binutils = binutils-unwrapped;
src = fetchTarball {

url = https://ftp.gnu.org/gnu/hello/hello-2.10.tar.gz;
sha256 = "...Not Important...";

};
system = builtins.currentSystem;

}

8

./hello_builder.sh

export PATH="$gcc/bin:$gnumake/bin:$coreutils/bin:..."
$src/configure --prefix=$out
make
make install

9

Stdenv

with (import <nixpkgs> {});
stdenv.mkDerivation {

pname = "hello";
version = "2.10";
src = fetchTarball {

url = https://ftp.gnu.org/gnu/hello/hello-2.10.tar.gz;
sha256 = "...Not Important...";

};
}

10

Install it

• Run nix build -f default.nix
• Take a look in result to makes sure it built correctly
• Run nix-env -f default.nix -i hello

What just happened?

11

Install it

• Run nix build -f default.nix
• Take a look in result to makes sure it built correctly
• Run nix-env -f default.nix -i hello

What just happened?

11

Symlinks!

Removing a package!

Easy right?

nix-env --uninstall hello

12

Garbage Collection

nix-collect-garbage

nix-collect-garbage -d Once you’re certain your new profile
works

13

Garbage Collection

nix-collect-garbage

nix-collect-garbage -d Once you’re certain your new profile
works

13

But why?

Nixpkgs

What is it?

• A (git) repository of packages used by Nix/Nixos by default

• Has versioned releases and an unstable rolling branch
• Contains packages you would expect from a package manager
• A collection of modules for Nixos
• Also a TON of library functions for packaging and modules

14

What is it?

• A (git) repository of packages used by Nix/Nixos by default
• Has versioned releases and an unstable rolling branch

• Contains packages you would expect from a package manager
• A collection of modules for Nixos
• Also a TON of library functions for packaging and modules

14

What is it?

• A (git) repository of packages used by Nix/Nixos by default
• Has versioned releases and an unstable rolling branch
• Contains packages you would expect from a package manager

• A collection of modules for Nixos
• Also a TON of library functions for packaging and modules

14

What is it?

• A (git) repository of packages used by Nix/Nixos by default
• Has versioned releases and an unstable rolling branch
• Contains packages you would expect from a package manager
• A collection of modules for Nixos

• Also a TON of library functions for packaging and modules

14

What is it?

• A (git) repository of packages used by Nix/Nixos by default
• Has versioned releases and an unstable rolling branch
• Contains packages you would expect from a package manager
• A collection of modules for Nixos
• Also a TON of library functions for packaging and modules

14

Nixos

What is it?

Nix has a pretty cool way of packaging. . .

What if your entire OS were a package!

Nixos is some bootstrapping scripts + nixos-rebuild + Nixpkgs

15

What is it?

Nix has a pretty cool way of packaging. . .

What if your entire OS were a package!

Nixos is some bootstrapping scripts + nixos-rebuild + Nixpkgs

15

What is it?

Nix has a pretty cool way of packaging. . .

What if your entire OS were a package!

Nixos is some bootstrapping scripts + nixos-rebuild + Nixpkgs

15

Low level primitives

A few low level nix functions + scripts dynamically create the right
directory structure

• system.build.toplevel = The contents of the system profile
• system.build.installBootLoader = A script run on sudo

nixos-rebuild boot|switch
• environment.etc = dictionary of files to symlink in /etc
• environment.pathsToLink = directories to symlink in

$systemProfile/sw

16

What might a config look like?

Nix-shell

Why you should care

Since nix runs on Linux/OSX, you can easily share
development/build environments

Given a shell.nix file, you can be sure a user will have all
dependencies and/or dev dependencies.

17

	What is Nix?
	But why?
	Let's make a package!
	Symlinks!
	Removing a package!
	But why?
	Nixpkgs
	Nixos
	What might a config look like?
	Nix-shell

